Ways and Means Should Include Job Creation of Advanced Biofuels and Bioproducts in Green Jobs Leg

On Wednesday, April 14 the House Ways and Means Committee will hold a hearing on Energy Tax Incentives Driving the Green Job Economy. The focus of the hearing is to examine the effectiveness of current energy tax policy and identify additional steps that the Committee can take to ensure continued job growth in this area while at the same time advancing national energy policy focus on a discussion of current and proposed energy tax incentives. Witnesses for this hearing have not been announced and we do not know how much of the hearing will focus on transportation fuels however, energy tax incentives for biofuels and biobased products should be a significant area of focus for this round of green jobs legislation. These technologies are ready to deploy and create near term job opportunities.

Industrial biotechnology is the key enabling technology for producing biofuels and biobased products like bioplastics and renewable chemicals to aid in reducing our dependence on foreign sources of oil, thereby reducing greenhouse gas emissions. They also have the ability to crate jobs, jobs that are currently moving overseas due to their reliance on petroleum as a feedstock or more favorable economic or political environments.

The United States has invested considerable amounts of taxpayer dollars to try to revive our economy. Too often, though, the resulting jobs are being created overseas, as other countries invest in green technology deployment. As a result, the opportunity to improve our economic competitiveness is lost. The United States is a leader in the research and development of green technologies, but to maintain that lead we must invest in the companies that are putting that green technology to work in our economy. These industries have shed hundreds of thousands of domestic jobs over the past two decades, as petroleum producing countries have attracted more capital investment. For example, U.S. chemical and plastics companies have increased capital investment outside the United States by 32 percent over the past decade, while increasing investment within U.S. borders by only 2 percent.

The Renewable Fuel Standard (RFS) enacted as part of the Energy Independence and Security Act of 2007 sets the minimum level of renewable fuel that must be produced and blended into the US transportation fuel supply at 36 billion gallons by 2022. 21 billion gallons of that requirement must be cellulosic or advanced biofuels. Direct job creation from the advanced and cellulosic biofuels volumes in the RFS could reach 29,000 by 2010, rising to 190,000 by 2022. Total job creation could reach 123,000 in 2010 and 807,000 by 2022. Jobs will be across many sectors of the economy. Some projected job creation sectors are: labor/freight, mixing and blending machine operators, shopping/receiving/traffic clerks, truck drivers, chemical equipment/technicians, chemical plant/system operators/electrical, sales etc.

The Ways and Means Committee can aid in accelerating this job creation by incentivizing biorefinery construction here in the United States. In 2008 Congress enacted a cellulosic biofuels production tax credit and enhanced depreciation for advanced biofuels facilities as part of the 2008 Farm Bill, both of which are scheduled to expire on December 31, 2012. Due to an overall downturn in the worldwide economy, this tax credit has not yet been utilized by cellulosic biofuels producers. This credit needs to be extended now in order to signal to investors that a plant being constructed this year, will have certainty in the availability of that tax credit once the plant begins to produce the advanced biofuel. A tax credit that expires before or shortly after production begins, does not create economic security for a yet to be built advanced biofuel biorefinery looking for funding. Furthermore, capital costs for construction of next generation biorefineries, which utilize renewable biomass to produce next generation biofuels and biobased products, are a substantial barrier to commercialization. Congress should provide an investment tax credit to help accelerate construction of next generation biorefineries and speed deployment of next generation fuels, chemicals and products.

Historically, the U.S. chemicals and plastics industry was the envy of the world. At its peak in the 1950s, the industry was responsible for over 5 million domestic jobs and a $20 billion positive trade balance for the United States. Jobs associated with the industry were typically among the highest paid in U.S. manufacturing. However, the petro-chemicals and plastics industries are now hemorrhaging jobs overseas. Conversely, biobased products and chemicals production, like domestically produced biofuels, will stay in the U.S., in close proximity to their biomass feedstocks. Total US employment in the chemicals industry declined by over 20% in the last two decades and is projected to decrease further. The US is a world leader in industrial biotechnology with a wide range of companies pioneering new, renewable pathways to traditional petroleum-based chemicals and plastics.

The potential job creation from bio-products is immense. Consider that the nascent biobased products industry employed over 5,700 Americans at 159 facilities in 2007 and every new job in the chemical industry creates 5.5 additional jobs elsewhere in the economy. Currently the biobased products portion represents only about 4 percent of all sales for the industry. Congress should create targeted production tax credits that can help them to expand their share of the market and grow additional domestic jobs. With an industry with the potential to grow by over 50% per year, bio-products can form the basis for a strong employment growth engine for the US.

Clearly commercializing the advanced biofuels and biobased products industries is an integral solution to creating high caliber domestic green jobs in the United States that will catapult this country to be a leader in successful high tech, sustainable technologies. BIO will be urging the Ways and Means Committee through written comments to recognize that innovations such as these are some of the most promising sources of green jobs and economic growth for the future.

Advertisements

Where is BIO: Amy Ehlers, Advanced Biofuels Technology Trends and Policy Opportunities

Last week, Amy Ehlers, Policy Manager in BIO’s Industrial and Environmental Section, gave a presentation in the Sustainability and the Environment track at the 2010 DOE Biomass Conference in Washington, DC. The title of the panel was: A look at the effect of Federal climate change legislation on the bioenergy sector and the title of her presentation was: Advanced Biofuels Technology Trends and Policy Opportunities. The session was moderated by Liz Marshall, Resource Economist, Biofuels Production and Policy Project, World Resources Institute and other panelists included Brent Yacobucci, Specialist in Energy and Environmental Policy, Congressional Research Service, Nathanael Greene, Director of Renewable Energy Policy, Natural Resources Defense Council and Dr. Adam Liska, Assistant Professor, Department of Biological Systems Engineering, University of Nebraska.

Ms. Ehlers highlighted industrial biotechnology as the key enabling technology for producing biofuels and biobased products like bioplastics and renewable chemicals to aid in reducing our dependence on foreign sources of oil, thereby reducing greenhouse gas emissions. Industrial biotechnology is the application of life sciences to improve traditional manufacturing and chemical synthesis manufacturing processes by using micro-organisms like bacteria and fungi as well as enzymes to improve manufacturing processes and make new “biobased” products and materials, including biofuels, from renewable feedstocks. Our member companies are using this technology to improve the yield, efficiency and energy inputs in first generation biofuels production, develop new feedstocks such as purpose-grown energy crops, broaden the use of algae technologies, make advancements in end molecule diversification for fuels and increase focus on renewable chemicals and bioproducts.

Currently there are over 40 planned or pilot production biorefineries all over the United States. The total job creation potential for the biofuels industry could reach 123,000 in 2012, 383,000 in 2016, and 807,000 by 2022 if the 36 billion gallon renewable fuel standard is met. In addition, industrial biotechnology can save the world up to 2.5 billion tons of CO2 per year. EPA’s analysis for the renewable fuel standards found that cellulosic biofuels reduce emissions by 110% compared to the gasoline baseline.

However, to realize the potential of this technology, there are serious issues that need to be addressed. For example: The issue of indirect land use change needs a conclusive policy approach; cap and trade legislation needs carbon accounting for advanced biofuels; financing policy needs programs that de-risk invest and tax incentives; and to advance the technology and product diversity we need a variety of feedstocks, conversion technologies, and products to achieve relevance and sustainability.

The benefits on all fronts reach far beyond ethanol, even beyond biofuels. The integrated biorefinery is the goal. Similar to a petroleum refinery, the integrated biorefinery has one feedstock going in, multiple products coming out. The benefits are numerous: an economic business model, energy efficient facilities, lowering dependence on foreign oil, lowering fuels, products and chemicals prices, boosting regional/rural economies, creating thousands of new permanent jobs and significantly reducing green house gas emissions compared to petroleum counterparts.

Finally Ms. Ehlers recommended that as the federal and several state governments contemplate and draft comprehensive climate change legislation and regulations, it’s important to keep in mind the benefits of industrial biotechnologies, biofuels and bioproducts and not inadvertently deter commercialization of some of the most promising greenhouse gas reduction technologies ready to be deployed. Specifically, biofuels should not be reregulated in a carbon regime as they are already regulated under the renewable fuel standard and biobased products need to be recognized and treated equally as these products provide green house gas emission reduction benefits by replacing petroleum use. Also, with regard to bio-power we need to consider how biomass feedstocks used for electricity be regulated in climate legislation, will biopower feedstocks be held responsible for indirect land use change like biofuels and how this could affect feedstock pricing for biofuels and biobased products. In closing, Ms. Ehlers reminded the audience that you can’t have a low carbon future without significant contributions from the biofuels and bioproducts industries.

From Pacific Rim Summit: Specialty Crops, Renewable Feedstocks & Sustainability

This panel on the second day of the Summit consisted of Richard Gustafson from the University of Washington, Gillian Madill, an independent consultant representing views of the environmental NGO community and John Sheehan, from the Institute on the Environment at the University of Minnesota.

While Mr. Gustafson and Mr. Sheehan gave informative talks on lifecycle assessment modeling and sustainability issues, Ms. Madill lit up the room with her talk titled, “Environmental Concerns with Energy Biotechnologies.” Ms. Madill started the conversation with the assertion that the environmental community and the biofuels community have the same goal, to supply energy in a new way that preserves the environment and our earth. Renewable energy and technology are tools to get to that end.

The environmental community has several valid concerns over widespread biofuels production. They see biofuels as a transition technology on our way to an energy future less dependent on liquid fuels, some would say zero liquid fuels. Zero because of the belief that no biofuels are carbon neutral. The question asked by environmental groups is, Why incentivize an unsustainable industry? Some concerns raised by Ms. Madill on behalf of the environmental community include deforestation of sensitive lands such as rain forests, environmental degradation, incorporation and containment of genetically engineered crops and organisms and intellectual property protection.

The biofuels industry plans to be a sustainable industry, but it is a new industry on the verge of commercialization with a formidable competitor. Ms. Madill’s point was that the environmental community and industry, while striving for some common goals, are currently at odds.

As I expressed to Ms. Madill, at the heart of this debate is the fact that most of the controversy centers around land use and protecting sensitive ecosystems. If biofuels went away tomorrow, other industries would compete for those same sensitive areas. After all, solar and wind farms require significant acreage as well, not to mention building schools or highways or the new grocery store that just opened in your neighborhood. Any industry that has a footprint will at some point, one can only assume in a future low carbon world, be mandated to quantify their lifecycle assessment, including land use and potentially indirect international land use, as biofuels are today.

My suggestion would be to partner to serve the common goal, protection of our vital and sensitive areas and resources which are important and treasured by all.

Weekly Industrial and Environmental Bio Blog Roundup

This week we start off with a little Road Music, From Bluegrass to Switchgrass, from our colleagues at the Biofuels Center of North Carolina. They’ve put together a nice set of bluegrass pieces. To listen visit their web site.

Gas2.0 announces this week that BP could start selling biofuels in 2010, writing that,

“BP has partnered with Verenium to bring a commercial-scale cellulosic ethanol facility online next year to start bringing alternative fuels to a gas”

Wednesday, according to the Government Monitor,Tom Vilsack announced,

“the publication of nine additional BioPreferred product categories which will now be eligible for Federal procurement preference.”

Making, “more Than 1,000 Biobased Products Eligible For Federal Procurement,” the Monitor reports.

You can find USDA biopreferred on Twitter, http://twitter.com/BioPreferred and on the Web at: www.biopreferred.gov.

So what’s the deal with this conversation on whether or not biofuels are carbon friendly? We at BIO have certainly have had a lot to say on the matter and you can find all our opinions on our biofuels page.

However, our opinions aside, the folks at the journal Science, where the initial study and follow-up policy paper were published say that they are giving us the inside story, by holding a moderated conversation between Tim Searchinger and John Sheehan—kind of interesting, take a look for yourself.

That’s all for this week. See you next week!

Weekly Biofuels and Climate Change Blog Round Up

This week in the blogosphere in Industrial & Environmental Technology we start off with NASCAR. Yes that’s right NASCAR . Domestic Fuel.com quotes an article in USA Today about NASCAR,

“The concept might seem incongruous in a sport inherently tied to an internal combustion engine that many find synonymous with global warming, but NASCAR, despite cars with an eye-popping 5 mpg, is trying to embrace its eco-conscious side as the federal government has begun prodding the racing industry to become leaders in efficiency…

On the competition side, NASCAR is exploring the replacement of its carburetors with more efficient fuel injection (perhaps as early as 2011) and the use of alternative fuels in at least one of its national series…”

Remarkable, but it just shows that biofuels are catching on everywhere.

Joshua Kagan wrote on GOOD.is/BLOGS a piece that mainly discusses the cons of corn ethanol and concludes that,

“There are non-food crops that can be used for biofuel. The federal government has awoken to this and is heavily promoting “second generation” cellulosic biofuels. Cellulosic refers to the “non-food” component of a plant or tree—like the husk of the corn or tree trimmings—that contain lots of energy in the form of carbohydrates called polysaccharides that can, in turn, be processed into biofuels. The next installment in this series discusses what is cellulosic ethanol, why you need to know about it, why you are not wrong if you find it ironic that cutting down trees is a carbon mitigation strategy, and how algae are really the future of biofuels.”

Now, I’m aware that different people have different opinions about which line of biofuels research we should pursue, but it’s important to remember that to ensure our energy security we must pursue all avenues of research. Advances in medicine didn’t come about from restricting areas of research, and the same will be true here. Diversity in energy research will ultimately lead to the most sustainable and energy efficient solution.

Industrial and Environmental Biotech in the Blogosphere

This week we start off with a United Nations report that urges caution on biofuels. Green Inc, a New York Times blog writes,

“The study concluded that whether a biofuel is climate-friendly or not depends largely on whether it is based on crops or production residues. Biofuels of the latter category were generally considered beneficial for the environment, and generating electricity locally from waste materials was found — in most cases — to be more energy efficient than converting biomass to liquid fuels.”

This paper was also written about in the blog, Futurism Now, the post called, Biofuels Will Increase Global Warming According to Study

They explain,

“That is because the land required to plant fast-growing poplar trees and tropical grasses would displace food crops, and so drive deforestation to create more farmland, a powerful source of carbon emissions.”

Not so fast, check out the Sustainable Production of Biofuels.

And biofuels continues to be the topic of the week. The biofuel review writes this week about a report from the Imperial College of London. The report has an upbeat tone about the future of biofuels and The biofuel review ends their post with a quote from Clare Wenner, Head of Renewable Transport at the Renewable Energy Association that says,

“Imperial College London has verified the results which show that these fuels can be produced in a sustainable way. With the right legislative framework, including the implementation of environmental rules under the Directive, it will be possible to limit indirect land use effects. Land will always be used for food and fuel, and the overall balance of these impacts could be positive as far as food is concerned. In fact, it seems likely that wheat-based biofuels production will not affect the amount of wheat exported by the EU as a whole.”

Then it’s more biofuels from Creamer Media’s Engineering News

According to Engineering News,

“Pretreatment and gasification technologies are on the verge of making second-generation biofuels a commercial reality, according to new analysis from Frost & Sullivan, entitled ‘Worldwide Market Analysis of Second Generation Biofeedstock.”

Engineering news interviewed Frost & Sullivan senior research analyst Phani Raj Kumar Chinthapalli,

“The use of second-generation biofuels is expected to reduce 
the emission of greenhouse gases (GHG), particularly carbon 
dioxide (CO2), from combustion engines by 80% to 85% in comparison with conventional fossil fuels. The lifecycle emissions for second-generation biofuels are in the negative range, which implies consumption of CO2 rather than emission.”

That’s it for this week, see you next week.

This Week in the Blogosphere

This week industrial biotechnology is a hot topic in the blogosphere. The WWF released a report,

“Industrial biotechnology has the potential to save the planet up to 2.5 billion tons of CO2 emissions per year and support building a sustainable future, a WWF report found.

As the world is debating how to cut dangerous emissions and come together in an international agreement treaty which will help protect the planet from potentially devastating effects of climate change, innovative ideas how to reduce our CO2 are very valuable.”

Kurt Cagle, writes on book publisher O’Reilly’s blog, From Pond Scum to Powerhouse: Algae Biofuels Day in the Sun.

“However, one biofuel is beginning to gain a great deal of research (and investor) interest: Algae. It turns out that there are a number of strains of algae which, when cooked, produce a remarkably pure grade of composite hydrocarbons, from ethanol all the way up to octane and higher chains. In a way, this isn’t surprising – most oil and natural gas that currently exists in the world came not from decaying trees and dinosaurs (generally) but rather came as algae in shallow oceans and seas absorbed sunlight, photosynthesized various sugar energies, then died and drifted to the sea floors. Deprived of the oxygen free radicals that would have decomposed them on land, the algae formed thick layers, hundreds or even thousands of feet deep, with the bottom-most layers becoming increasingly compressed by the weight of sludge and water on top of them.”

This week popular blog, boing boing writes about a New Yorker article, Where Will Synthetic Biology Lead Us. Boing boing writes this,

“One team of biologists, led by Jay Keasling at Berkeley, has had great success with amorphadine, the precursor to the malaria medicine artemisinin: they constructed a microbe to manufacture the compound, and by 2012 they will have produced enough artemisinin that the cost for a course of treatment will drop from as much as ten dollars to less than a dollar. “We have got to the point in human history where we simply do not have to accept what nature has given us,” Keasling tells Specter. He envisions a much larger expansion of the discipline, engineering cells to manufacture substances like biofuels.

Another scientist, Drew Endy of Stanford, has collaborated with colleagues to start the BioBricks Foundation, a nonprofit organization formed to register and develop standard parts for assembling DNA. Endy predicts that if synthetic biology succeeds, “our ultimate solution to the crisis of health-care costs will be to redesign ourselves so that we don’t have so many problems to deal with,” but he also acknowledges the risks inherent in the field. Synthetic biology, Endy tells Specter, is “the coolest platform science has ever produced, but the questions it raises are the hardest to answer.” Yet he also argues that “the potential is great enough, I believe, to convince people it’s worth the risk.” Specter writes, “The planet is in danger, and nature needs help.” While biological engineering will never “solve every problem we expect it to solve,” he writes, “what worked for artemisinin can work for many of the products our species will need to survive.””

The blog Singularity Hub announces,
iGEM 2009: Synthetic Biology Competition Bigger than Ever this Halloween,

“Like some Frankenstein monster composed of space camp, graduate school, and science fair, iGEM is ready to spring to life this Halloween. The International Genetic Engineering Machine competition is now in its 6th iteration and will feature some of the best undergraduate work in synthetic biology the world has ever seen. The main jamboree from Oct 31st to Nov 2nd will allow the more than 110 teams competing to reveal the successes and failures from their summer long foray into the laboratory. As always, iGEM is hosted by MIT and the public is invited to attend the awards ceremony on Sunday November 1st at 8am. If you’re in the Boston area, you definitely want to go. Last year’s winners included bacteria that could produce electricity, e.coli that could hunt and kill other pathogens, and yeast that could give beer high levels of resveratrol.”

And that’s all for this week.