Final Notes from BIO’s World Congress

On June 29 at BIO’s World Congress, Steen Riisgaard, CEO of Novozymes, and Stephen Tanda, Board Member of Royal DSM N.V., released a report from the World Economic Forum on The Future of Industrial Biorefineries. The report says that a biorefinery value chain could create revenue for agricultural inputs ($15 billion US), for biomass production ($89 billion), for biomass trading ($30 billion), for biorefining inputs ($10 billion), for biorefining fuels ($80 billion), for bioplastics ($6 billion) and for biomass power and heat ($65 billion) by 2020.

You can download and listen to the press conference Release of report on The Future of Industrial Biorefineries.

The highlight of the final day of the World Congress was a debate between Princeton Visiting Scholar Tim Searchinger and MSU Professor Bruce Dale, moderated by Univ. of Minnesota’s John Sheehan. Sheehan sought to explore both the strongest and weakest parts of the arguments for and against including an indirect land use penalty in the carbon lifecycle of biofuels and bioenergy. For him, the central question in the debate is whether or not the world is running out of land to use — for all purposes, not just agriculture — meaning that any new use, such as biofuels, inevitably causes a shift of use somewhere else.

For Searchinger, the central point is that the traditional lifecycle of biofuels and biomass energy accounts a credit for using carbon stored in crops and trees. Bioenergy, he argues, should only get credit for new sources of carbon that it creates or for using carbon that would have decayed and entered the atmosphere anyway, but never for carbon that is already stored.

Dale took an optimistic view that a switch to bioenergy — and away from petroleum — would spur the creation of additional carbon stores. This could be accomplished through increased productivity and yield on the same amount of land, for instance, and through regrowing of crops and biomass sources so that the credit given to bioenergy is repaid quickly.

Advertisements

Wrong Question: Can Biofuels Be Carbon Friendly?

The Science Insider blog last week hosted an interesting debate between Tim Searchinger, Princeton visiting scholar, and John Sheehan, of the Institute on the Environment at the University of Minnesota, regarding the recent policy proposal in the pages of Science by Searchinger et al. to “fix” the carbon accounting of biomass for bioenergy and biofuels in U.S. legislation and the successor to the Kyoto protocol, by giving credit only to biomass that can be managed in such a way as to sequester additional atmospheric carbon in the soil. As Searchinger puts it in the recent debate, “bioenergy only reduces greenhouse gases if it results from additional plant growth or in some other way uses carbon that would not otherwise be stored.”

To be sure, use of bioenergy can only reduce the overall level of greenhouse gases in the atmosphere by sequestering carbon in the soil (in root systems). And yes, individual biofuel or bioenergy producers could use only new biomass that has recently pulled carbon from the atmosphere (although other environmentalists may differ on that) or biomass that would otherwise be left to decay and emit the stored carbon anyway. The question then is whether there is enough of this type of biomass to meet energy needs.

But that is not the point of the current Kyoto protocol or of U.S. cap-and-trade legislation. Their shared goal is to reduce overall GHG emissions, over time, ideally lowering the cap until emissions reach equilibrium.

Searchinger cites recent modeling studies to say that not employing his fix to global carbon accounting “would lead to the loss of most of the world’s natural forest because clearing those forests for bioenergy becomes one of the cost-effective means of complying with laws to reduce greenhouse gas emissions.” However, the fossil fuel industries are certain to receive allowances under the U.S. legislation. Employing a carbon accounting model that treats biomass as equivalent to fossil fuel would definitely make continued reliance on fossil fuel the cost-effective alternative.

Another interesting response to the Searchinger et al article comes from Geoff Styles of the Energy Collective, who extends the carbon accounting argument to electric vehicles. All alternative energy sources can be opened up to particular scrutiny. What is needed is a truly accurate and balanced accounting of fossil fuel use to compare these arguments.

The only other political option would be to drastically cut use of all energy. Models do project that the current worldwide economic recession has brought about a reduction in climate emissions by cutting energy use.

Searchinger does note that biomass and biofuels have the potential to balance greenhouse gas emissions – depending on land management. A better question here is whether his models can show that fossil fuel use also has the potential to balance greenhouse gas emissions with proper land management.

Weekly Industrial and Environmental Bio Blog Roundup

This week we start off with a little Road Music, From Bluegrass to Switchgrass, from our colleagues at the Biofuels Center of North Carolina. They’ve put together a nice set of bluegrass pieces. To listen visit their web site.

Gas2.0 announces this week that BP could start selling biofuels in 2010, writing that,

“BP has partnered with Verenium to bring a commercial-scale cellulosic ethanol facility online next year to start bringing alternative fuels to a gas”

Wednesday, according to the Government Monitor,Tom Vilsack announced,

“the publication of nine additional BioPreferred product categories which will now be eligible for Federal procurement preference.”

Making, “more Than 1,000 Biobased Products Eligible For Federal Procurement,” the Monitor reports.

You can find USDA biopreferred on Twitter, http://twitter.com/BioPreferred and on the Web at: www.biopreferred.gov.

So what’s the deal with this conversation on whether or not biofuels are carbon friendly? We at BIO have certainly have had a lot to say on the matter and you can find all our opinions on our biofuels page.

However, our opinions aside, the folks at the journal Science, where the initial study and follow-up policy paper were published say that they are giving us the inside story, by holding a moderated conversation between Tim Searchinger and John Sheehan—kind of interesting, take a look for yourself.

That’s all for this week. See you next week!

Compounded Climate Accounting Errors

Timothy Searchinger, visiting scholar at Princeton University, Dan Kammen of the University of California Berkeley, David Tilman of the University of Minnesota and other authors from the Environmental Defense Fund published an interesting new proposal in the Policy Forum section of Science magazine today. The argument put forward is that “Replacing fossil fuels with bioenergy does not by itself reduce carbon emissions, because the CO2 released by tailpipes and smokestacks is roughly the same per unit of energy regardless of the source.”

The premise behind this proposal is that the world is facing such a great need to reduce carbon emissions that future sources of energy and biofuels cannot make use of any currently sequestered carbon. Maybe… but there’s a perverse consequence of using this logic. Fossil fuels are a source of sequestered carbon. If you then say that all existing biomass is an untouchable source of sequestered carbon, you are essentially counting that sequestration as a benefit of having used fossil fuels for the past 150 years.

The logic is particularly tortured when a foregone sequestration penalty is attributed to biofuels when none is counted for petroleum.

There is much in the paper to agree with — particularly in recognizing carbon sequestration benefits from improved land management practices and energy crops. And certainly, the challenge of climate change is so great that implementing best practices for carbon sequestration is a necessity.

But a proposal that attributes carbon sequestration in trees as a plus in the accounting of fossil fuel use is counterproductive.

Environmentalists Want to “Stick” It to Farmers

Jason Hill of the University of Minnesota’s Institute on the Environment wrote recently in the St. Paul Pioneer Press, asking why the Waxman-Markey climate change bill should treat agricultural emissions differently from energy and transportation emissions, with a “carrot-and-stick approach, one in which fossil fuels suffer the stick while agriculture feasts upon the carrot.” Hill’s primary objection to the bill is the amendments added by Rep. Collin Peterson (D-Minn.), which exempt agriculture and forestry from carbon caps but provide credits for carbon sequestration that farmers can trade on the market. They also would postpone implementation of the EPA’s analysis of international land use change.

Writes Hill, “Peterson’s amendment is essentially nothing more than a slick accounting trick, one meant to portray biofuels produced in this nation in a better light while making the carbon footprint of agriculture in developing countries look worse.”

This is a bizarre statement, turning even the theory of indirect land use change on its ear. The original calculation of indirect land use change put forward by Searchinger et al held that “when farmers use today’s good cropland to produce food, they help to avert greenhouse gasses from land use change.” Further, in the context of international negotiations for a climate change treaty to replace the Kyoto Protocol, the ILUC theory is clearly an attempt to shift accounting of carbon emissions in developing countries onto U.S. biofuels.

Calculations of land use change by current models are completely contradicted by agricultural trade and production numbers, making the models appear to be nothing more than accounting tricks. The model projections look nothing like real outcomes because they rely on several false premises and double count certain sources of emissions. The greatest fallacy of the ILUC theory is that worldwide agricultural productivity has already reached a natural limit and cannot respond to increased demand in any other way than clearing of rainforests. The main premise of the theory – that biofuels have been introduced into a static worldwide agricultural system and therefore are the primary cause of shifting agricultural production – is an assumption that can’t be supported by data.

Using USDA’s modest assumption for growth in yields of U.S. corn over the life of the Renewable Fuel Standard, a simple calculation shows that corn productivity can keep up with demand to produce the conventional biofuel portion of the RFS. This assumes continuation of 2016 to 2018 USDA projections for 2022 – constant total planted acreage of 90.5 million acres, increase of 75 million bushels per year for fuel ethanol, and increase of 1.8 bushel per acre per year yield improvement:

Overall harvested acreage for corn production is projected to remain stable due to continued yield productivity gains

In fact, USDA currently projects a corn yield of 159.5 bushels per acre for this year. And USDA projections from January 2009 show that inclusion of biofuels will stabilize land use, in terms of the acres planted to the eight major crops:

U.S. land planted to eight major crops.

Beyond this, and despite a report) that deforestation in Brazil increased in June, the deforestation rate in Brazil continues to decline. Responding to the Agence France-Presse report, Mongabay noted, “Deforestation in the Brazilian Amazon typically peaks during the June-August dry season when ranchers and farmers burn forest to clear land for development.”

A group of scholars – that includes Hill – recently called for a focus on real solutions to climate change. The world needs economic growth, energy and food. We should not premise our search for solutions on the false notion that these three necessities are in direct competition with each other.

New Biofuels Manifesto

University of Minnesota Professor David Tilman, Princeton University Visiting Scholar Tim Searchinger, Dartmouth Professor Lee Lynd and others involved in the debate over the environmental and social impacts of biofuels have published in Science magazine what amounts to a new manifesto on how biofuels can be done right.

The authors list five biofuel feedstocks that are the best in terms of sustainability — “lower life-cycle greenhouse-gas emissions than traditional fossil fuels and with little or no competition with food products.”

The authors conclude:

Three steps should be taken: meaningful science-based environmental safeguards should be adopted, a robust biofuels industry should be enabled, and those who have invested in first-generation biofuels should have a viable path forward.

The EPA’s proposed rule on the Renewable Fuel Standard was intended to outline a viable path forward for first-generation biofuels. The Best Case Natural Gas Dry Mill, the Biomass Dry Mill, and the Biomass Dry Mill with Combined Heat and Power scenarios outlined in the “EPA Lifecycle Analysis of Greenhouse Gas Emissions from Renewable Fuels” all produce reductions in greenhouse gases that come close to or exceed the 20 percent standard in the RFS. The EPA’s definition of the Best Case is: “Best case plants produce wet distillers grain co-product and include the following technologies: combined heat and power (CHP), fractionation, membrane separation and raw starch hydrolysis.”

The question will be whether anyone invests in these technologies or in additional biofuel production at all, given the current economic and social climate in which biofuel companies are operating. One possible factor in choosing the best biofuels ought to be how soon they can become a reality and whether they can be improved from there.

The Case for Correct Logic

Michael Grunwald of Time Magazine recently published a new, rather self-serving article in the Washington Monthly, filled with distorted logic and mangled facts.

His portrayal of Tim Searchinger as a humble lawyer who experienced an epiphany about biofuels is disingenuous at best. While now a visiting scholar at Princeton University, Tim Searchinger was formerly a lobbyist for the Environmental Defense Action Fund and was intimately involved in lobbying key Members of Congress during the drafting of the Energy Independence and Security Act of 2007. Sen. John Thune (R-S.D.) today characterized the inclusion of indirect land use as “an eleventh-hour, backroom change to the energy bill.”

One of Grunwald’s more egregious claims is that biofuels have “ratcheted up deforestation rates through a chain reaction that Searchinger and I witnessed on a visit to the Amazon.” How precisely does one “witness” a claimed indirect effect, occurring on a global scale, through a visit to the Amazon? This claim is as unsupported as that made by the EPA in its Notice of Proposed Rule:

there is considerable overall certainty as to the existence of the land use changes in general, the fact that GHG emissions will result, and the cause and effect linkage of these emissions impacts to the increased use of feedstock for production of renewable fuels.”

The EPA certainly hasn’t footnoted this assertion. And the paragraph that follows it maintains that the EPA is confident of the cause and effect connection due to the modeling (See Federal Register, Vol. 74, No. 99, Tuesday, May 26, 2009, Proposed Rules, p.25024). But the causal connection is one of the assumptions of the model; it would create circular logic then to claim that the model was proof of the causal connection.

According to Grunwald, Searchinger’s previous epiphany was that “in a world with 6.7 billion mouths to feed, when you use an acre of farmland to grow fuel, somewhere an acre of something else is probably going to be converted into new farmland to grow food.” And Searchinger’s latest epiphany is that as world population increases to 9 billion, “we’re going to need the world’s farmland to produce as much sustenance as possible on as little ground as possible, so that we can leave the Amazon alone.” Therefore, he concludes, we need to consolidate agricultural production and oppose biofuels.

The problem with that logic is that the Amazon and other rainforests exist in places where population is growing fastest. If agricultural production is consolidated in the United States or in Brazil, how would those growing populations afford to buy it? This particular “epiphany” courtesy of Karl Marx has stood the test of time pretty well. I guess we can be thankful he was an economist and not a lobbyist.

Oversimplification of the relationship between biofuel production and deforestation ill-serves efforts to protect the rainforest. Grunwald’s argument that “we’re better off burning gasoline on a warming planet than using land as a substitute” would be true if and only if stopping biofuel production could directly prevent deforestation. There are too many direct causes of deforestation — including land clearing for subsistence farming to feed growing populations who have no other way of feeding themselves — standing in the way.