BIO World Congress Begins with Newsmakers

BIO’s 2011 World Congress got off to a strong start in Toronto, with news announcements from G2 BioChem and others throughout the morning.
The big news from BIO was the presentation of the George Washington Carver Award to Royal DSM CEO/Chairman Feike Sijbesma. Sijbesma discussed the evolution of DSM from a coal mining company to a chemical company and now to a global life sciences and materials company. For Sijbesma, this transformation mirrors the current Green Industrial Revolution.
Feike Sijbesma’s acceptance speech is available as written.

Download audio of speech: Royal DSM Chairman/CEO Feike Sijbesma Accepts the 2011 BIO George Washington Carver Award
As evidence of the Green Industrial Revolution, DSM announced plans to build a bio-succinic acid plant in partnership with Roquette. The plant would open in Italy in 2012 if all goes according to plan. BP announced investment in Verdezyne, a California company building a platform to produce adipic acid, which is a building block for nylon.
Genencor published the results of a new survey of consumer acceptance of biobased household products. In a survey of U.S. and Canadian consumers, from 30 to 40 percent of respondents indicated they have heard the term “biobased products.” More than two-thirds indicated they’d be willing to purchase them for their environmental sustainability, if they were comparable to non-biobased products on cost and effectiveness.

World Congress on Industrial Biotech Begins in Washington

On the opening day of BIO’s World Congress on Industrial Biotechnology and Bioprocessing in Washington, DC, new announcements came from the Department of Energy, ZeaChem, Elevance and DSM.

The DOE’s Assistant Secretary Cathy Zoi, head of the office of Energy Efficiency and Renewable Energy, announced funding of $24 million for three research groups addressing key hurdles in commercializaiton of algae. The money will be split among the Sustainable Algal Biofuels Consortium, the Consortium for Algal Biofuels Commercialization, and Cellana, LLC Consortium.

The DOE also released the National Algal Biofuels Technology Roadmap.

Elevance announced a joint venture with Wilmar International to build a commercial-scale manufacturing facility in Surabaya, Indonesia with an initial capacity of approximately 400 million pounds of its renewable waxes and oils. The facility will be located within Wilmar’s new integrated manufacturing complex now under construction and is expected to come online in 2011.

DSM announced formation of a joint venture with Roquette Freres — to be called Reverdia V.o.f. and to be headquartered in the Netherlands. The venture will combine Roquette’s sugars with DSM’s fermentation technology to produce succinic acid, which is a building block chemical for nylon and other plastics. This follows another French succinic acid plant, Bio Amber.

ZeaChem announced achievement of milestones in scaling up their biorefinery process.

A session at the World Congress focused on commercialization of algae biofuels, with DOW, UOP Honeywell, Raytheon, and HR BioPetroleum presenting updates on the partnerships they’ve formed. The discussion turned to jet fuels and chemicals as way to ensure any algal process is sustainable — it can ensure economic viability and reuse of all byproducts.

Where is BIO: Dr. Rina Singh, Growing and Strengthening the Biobased Chemicals Industry

BIO is involved in many different policy areas, but did you know that BIO’s staff is participating in the biotech community—giving talks at various conferences and meetings around the world.  Yesterday BIO’s very own Rina Singh Ph.D., Policy Director in the Industrial Biotechnology section at BIO, gave a presentation at a United States Department of Agriculture (USDA) Public Meeting: Biobased Intermediate Materials and Feedstocks.  The title of her talk: Growing and Strengthening the Biobased Chemicals Industry.

According to Dr. Singh biorefining isn’t just for bio-ethanol.  Biorefining can produce polyester, nylon, and amino acids just to name a few.  In fact, one feedstock may produce many different products.

Plastics and ethanol were among the first chemical products to use biorefining methods for production.  Then as the technology advanced, methods using bioconversion entered the arena and advanced methodologies, like the succinic acid platform were developed to produce a variety of biochemicals.  The latest in this technology includes synthetic biology and systems biology which bring new production methods to biofuels, renewable chemicals, specialty chemicals, and other bioproducts.

View Dr. Singh’s presentation, Growing and Strengthening the Biobased Chemicals Industry.

Industrial Biotechnology: Biobased Products, Biofuels, and Synthetic Biology

Biobased products cover a wide range of materials.  One new such product is biobased insulation made from mushrooms named Greensulate.

The blog Greenline says that Greensulate,

“…is a bio-base alternative to rigid insulation made from paper, rice hulls, and mushroom fibers.   The product is still undergoing testing but the outlook for this new product is very good.  The insulation takes advantage of the mycellium, the roots of the mushroom plant that have incredible structural and insulation properties.    It requires no power to grow and is flame resistant.   The product also has potential to take the place of packing peanuts, they can be thrown in the garden or used in potted plants after they are no longer needed.”

You can find more information on biobased products and the future of industrial biotechnology on our web site BIO.org.

Cultural synthetic biology—that’s the latest topic for Christina Agapakis on her blog, Oscillator .

Agapakis writes,

“The future potential of synthetic biology is usually discussed in terms of applications in fields like medicine, food science, and the environment. Genetically engineered life forms are being designed to make medicines cheaply, to target tumor cells, to make more nutritious food, or to make agricultural plants that are easier to grow with less of an environmental impact, to clean up pollution or produce sustainable biofuels. What if synthetic biology systems were instead designed for use in culture or entertainment?”

She goes on to talk about acoustic sound gardens, bugs engineered to chew specially designed nuts in rhythm, whistling termites, lilly pad speakers, and popping seed pods.

You can find more information on synthetic biology on our web site BIO.org.

The sources for biomass to be converted to biomass are quite varied.  One example is the poplar tree.  According to the blog, Trees, Climate and People,

“Poplar trees (genus Populus, not to be confused with yellow-poplar, Liriodendron tulipifera) are among the fastest-growing trees in the world, and represent a diverse wide-spread genus of trees.  Poplars are grown in plantations for pulp and paper, and have great potential as feedstock for biofuels production.

Poplars have a lot of advantages as experimental plants, as they grow clonally from cuttings and are easy to hybridize.  The poplar genome has been sequenced, making poplars even more attractive as research subjects and for advanced breeding.

Gary Coleman and his colleagues at the University of Maryland and Bowie State University have just received a $3.2 million grant from the National Science Foundation to take advantage of the poplar genome map to try to improve the prospects for poplars as a biofuel feedstock.”

You can find more information on biofuels and biomass sources on our Web site BIO.org.